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Abstract. Traditional methods for the analysis of system performance
and reliability generally assume a precise knowledge of the system and
its workload. Here, we present methods that are suited for the analysis
of systems that contain partly unknown or unspecified components, such
as systems in their early design stages.

We introduce stochastic transition systems, a high-level formalism for
the modeling of timed probabilistic systems. Stochastic transition sys-
tems extend current modeling capabilities by enabling the representation
of transitions having unknown delay distributions, alongside transitions
with zero or exponentially-distributed delay. We show how these various
types of transitions can be uniformly represented in terms of nondeter-
minism, probability, fairness and time, yielding efficient algorithms for
system analysis. Finally, we present methods for the specification and
verification of long-run average properties of STSs. These properties in-
clude many relevant performance and reliability indices, such as system
throughput, average response time, and mean time between failures.

1 Introduction

The analysis of system performance and reliability is an essential part of the
design of many computing and communication systems. Most approaches to the
computation of performance and reliability indices presuppose that the structure
of the system is known in detail, and that the values of the transition probabilities
and the delay distributions are precisely known. Here, we describe methods that
are suited to the evaluation of systems that are still in their early stages of
design, when not all the system components may have been designed, and when
relevant quantities may be known only with some approximation.

We introduce stochastic transition systems (STSs), a high-level modeling lan-
guage for timed probabilistic systems. Stochastic transition systems provide a
concise and compositional way to describe the behavior of systems in terms of
probability, waiting-time distributions, nondeterminism, and fairness. In partic-
ular, the execution model of STSs extends that of generalized stochastic Petri
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nets [ABC84] and of stochastic process algebras such as TIPP [GHR93], PEPA
[Hil96] and EMPA [BG96] with the introduction of nondeterminism and of tran-
sitions with unspecified delay distribution. These features enable the modeling
of unknown (or imprecisely known) arrival rates and transition probabilities, as
well as the modeling of schedulers with unspecified behavior.

We provide two semantics for STSs. The first one is an informal semantics
that can be used to gain an intuitive understanding of STSs, and to guide the
construction of system models. The second semantics is defined by providing a
translation from STSs to fair timed probabilistic systems (fair TPSs), a low-level
computational model based on Markov decision processes that is well suited to
the application of verification algorithms. The relation between an STS and its
translation TPS parallels the relation between a first-order transition system
and its representation as a state-transition graph; in particular, the state space
of the translation TPS coincides with that of the STS. We show that the trans-
lation precisely captures the informal semantics of STSs, justifying the use of
the informal semantics in the construction of system models.

The translation relies on a new notion of fairness for probabilistic systems,
called probabilistic fairness. Unlike previous notions of fairness, which refer to
the transitions that are enabled and taken along system behaviors [Var85, MP91,
KB96], probabilistic fairness is a structural condition on the policies that govern
the resolution of nondeterministic choices. The condition states that, for every
policy, there must be a fized £ > 0 such that every fair alternative is selected with
probability at least . Probabilistic fairness enables the faithful representation
of transitions with unspecified delay distributions. Probabilistic fairness also
simplifies the analysis of several algorithms, since its basic ingredients —policies
and probability— are already present in Markov decision processes.

We then turn our attention to the specification and verification of long-run
average properties of probabilistic systems. Long-run average properties refer
to the average behavior of a system, measured over a period of time whose
length diverges to infinity. In a purely probabilistic system, these properties are
related to the steady-state distribution of the Markov chain corresponding to the
system. We specify long-run average properties of systems by attaching labels to
the system states and transitions, following a simplified version of the approach
of [dA98]. The labels specify system tasks, whose long-run average outcome or
duration can be measured. This enables the specification of several reliability
and performance indices, such as throughput, average response time, and mean
time between failures.

Finally, we present algorithms for verifying that the performance and relia-
bility specifications of an STS are met even under the most unfavorable combi-
nation of nondeterministic behavior and choice of delays for the transitions with
unknown delay distributions. The verification process is based on an adaptation
of the algorithms presented in [dA98] to systems that include fairness. We show
that the presence of fairness does not increase the complexity of the verification
problem, which can again be solved in polynomial time in the size of the fair
TPS. The analysis of the verification algorithms also shows that, when consider-



ing long-run average properties of finite-state systems, our notion of probabilistic
fairness yields the same verification algorithms as the weak fairness of [KB96],
showing that the two notions are equivalent in this context.

2 Stochastic Transition Systems

Stochastic transition systems (STSs) have been inspired by the fair transition
systems of [MP91] and by the real-time probabilistic processes of [ACD92]. A
stochastic transition system (STS) is a triple S = (V,0,T), where:

— Vs afinite set of typed state variables, each with finite domain. The (finite)
state space S consists of all type-consistent interpretations of the variables
in V. We denote by s[z] the value at state s € S of z € V; the interpretation
function [-] is extended to terms in the obvious way.

— O is an assertion over V denoting the set {s € S | s | O} of initial states.

— T is a set of transitions.
With each transition 7 € 7 are associated the following quantities:

— An assertion &, over V, which specifies the set of states {s € S| s =&} on
which 7 is enabled.
— A number m, > 0 of transition modes. Each transition mode ¢ € {1,...,m,}
corresponds to a possible outcome of 7, and is specified by:
e A set of assignments {z' := f] }.cv, where each f is a term over V.
These assignments define the function f7 : S — S, which maps every
state s € S into a successor s' = f7(s) such that s'[z] = s[f7,] for all

z €.
e The probability p] € [0,1] with which mode ¢ is chosen. We require
Y pf =1

The set T of transitions is partitioned into the two subsets 7; and 74 of immediate
and delayed transitions. Immediate transitions must be taken as soon as they
are enabled. A subset 7y C 7; indicates the set of fair transitions. In turn, the
set T3 of delayed transitions is partitioned into the sets 7, and 7, where:

— T. is the set of transitions with erponential delay distribution. With each
T € 7T, is associated a transition rate vy, > 0.

— Tu is the set of transitions with unspecified delay distributions. These tran-
sitions are taken with non-zero delay, but the probability distribution of
the delay, and the possible dependencies between this distribution and the
system’s present state or past history are not specified.

Given a state s € S, we indicate by T(s) = {r € T | s E &} the set of
transitions enabled at s. To insure that 7(s) # () for all s € S, we implicitly add
to every STS an idle transition T;qe € T, defined by &;,,,. = true, m,,,. =1,
prfe =1, y.,,,. = 1, and by the set of assignments {z' := 2},¢y. The choice of
an unitary transition rate is arbitrary.



2.1 Informal Semantics of Stochastic Transition Systems

We present here an informal semantics of STSs, which can be used to gain an
intuitive, but accurate, understanding of their behavior. In a later section, we
show that this informal semantics precisely corresponds to the formal semantics,
defined by translation into lower-level computational models.

In the informal semantics, the temporal evolution of the system state is repre-
sented by a timed trace. A timed trace is an infinite sequence (so, ly), (51, 1), - -
of pairs, where Iy C R* is a closed interval and s is a system state, for k£ > 0.
The intervals must be contiguous, i.e. max I = min ;4 for all £ > 0, and
the first interval must begin at 0, i.e. minIy = 0. A pair (sg, [;) in a timed
trace indicates that during the interval of time I} the system is in state s;. The
choice of considering only closed intervals is arbitrary. Note that point intervals
are permitted: they represent transitory states in which an immediate transition
is taken before time advances. These transitory states are very similar to the
vanishing markings of generalized stochastic Petri nets (GSPNs) [ABC84].

The initial state sq of a timed trace must satisfy so = @. For k > 0, state sg
determines the expected duration of I}, and the next state sx41 as follows:

— Some immediate transition enabled. If T (s) N T; # 0, then the duration of
I is 0. A transition 7 € T (sg) N 7; is chosen nondeterministically, subject
to fairness requirements: if 7 € 7Ty, then 7 must be chosen with non-zero
probability.

Once 7 has been chosen, each transition mode i € [1..m,] is chosen with
probability p], and the successor state is given by sg+1 = f7 (s).

— Only delayed transitions enabled. If T (sx) C Tg, let To(sk) = T (sx) N Te
and Ty (sx) = T (sk) N Ty. The transition rates 7, for 7 € T.(s) are given; we
select nondeterministically v, > 0 for 7 € T, (sx)- The expected duration of
Iy, is then given by 1/3° 7, ) 7¥r, and each transition 7 € T (s) is chosen

with probability v;/ 3" c7(s,) Vr'-
Once 7 has been chosen, each transition mode ¢ € [1..m,] is chosen with
probability p?, and the successor state is again given by sg11 = f7(s).

Time divergence. In our definition of timed trace, we have not ruled out the pos-
sibility of traces along which time does not diverge. These traces can arise, since
the time intervals in the trace can be point intervals, or can be arbitrarily small.
In a later section, we provide a method for checking that non-time-divergent
traces occur with probability 0.

2.2 An Example of STS

As a simple example of STS, we consider a model for a system consisting of
a commuter that continually travels between cities A and B, each way passing
through an intermediate city C. Cities A and C' are connected by highway link 1,
cities C' and B by link 2. Each link can be in good conditions, in poor conditions,
or undergoing repair: for ¢ = 1,2, the state of link ¢ is represented by variable
l;, with domain {g,p,r}. For each link, the transition from good to poor has



rate v4p = 0.05, and the transition from repair to good has rate v, = 0.1. The
transition from poor to repair has unspecified delay distribution: the scheduling
of road repairs follows criteria that are not known to the layperson.

The commuter can be at one of 4 states, depending on which segment must be
traversed next and in which direction. The state of the commuter is represented
by variable ¢, with domain {1,2,3,4}: we let ¢ = 1 when A — C is the next trip
to be undertaken, and similarly ¢ = 2 for C - B, ¢ =3 for B —» C, and ¢ = 4 for
C — A. Depending on the conditions of the next link, the commuter traverses
the link with rate vy, = 0.5, 7, = 0.3, or 7, = 0.1.

The STS S = (V,0,T) has variables V = {¢,11,l2} and initial condition
O:c=1Al1 = gAly = g. The set of transitions is T = {7yp,i, Tpr,i> Trg,i }i=1,2 U
{79, 7p, 7r }, where transition 74, ; models link ¢ going from good to poor, tran-
sition 7, models the commuter traversing a good link, and the meaning of the
other transitions can be analogously inferred. We list only a few representative
transitions; the others are similar. For brevity, while describing transition 7 we
write & instead of £,, and so forth.

— Fori=1,2,75p; € Tois defined by £ : [; = g; and vy =0.05; m =1; p; = 1;
and li :=p, l§_,:=13_;,c :==c

— For i =1,2, 7,3 € Ty is defined by £ : I; = p; and m = 1; p1 = 1; and
U=rl5_; =134 c :=c

— 1, €T, isdefined by E:[(c=1Ve=4)ANl1 =g]V[(c=2Vec=3)Alx =g]|;
and y=0.5;m=1;py =1;and ¢ := (cmod 4) + 1, ] := 11, I}, := 5.

Alternatively, consider the case in which links in poor conditions are scheduled
for repair with rate at least 0.1. To model this case, it is possible to introduce
additional transitions 7,,.; € T, for i = 1,2. These transitions are defined like
Tpr,i» © = 1,2, except that they have rate vy = 0.1. More complex combinations of
exponential-delay and unspecified-delay transitions can be used to model more

general types of partial knowledge about transition rates.

2.3 Related Models for Probabilistic Systems

Stochastic transition systems are related to several other models for probabilistic
systems. The execution model of STSs is related to that of generalized stochas-
tic Petri nets (GSPNs) [ABC84]. In particular, STSs generalize GSPNs by in-
troducing transitions with unspecified delay distributions, and by introducing
the possibility of nondeterministic choice among enabled immediate transitions.
STSs extend in a similar way also the probabilistic finite-state programs of [PZ86)
and the real-time probabilistic processes of [ACD92]. The introduction of nonde-
terminism and of transitions with unspecified delay distributions, and the capa-
bility to deal with these features in the verification process, also represents an
innovation with respects to probabilistic process algebras for performance mod-
eling, such as TIPP [GHR93], PEPA [Hil96] and EMPA [BG96]. Probabilistic
automata [SL94, Seg95] are another model that has been proposed for prob-
abilistic real-time systems. Probabilistic automata are more closely related to
timed probabilistic systems, our low-level model of computation, than to STSs.



3 Translating STSs into Low-Level System Models

The formal semantics of STSs is defined by translating STSs into fair timed prob-
abilistic systems (fair TPSs), a low-level computational model based on Markov
decision processes. Besides providing us with a formal semantics for STSs, the
translation is also used in the verification process, since the verification algo-
rithms will be applied to the fair TPSs obtained by translating the STSs.

3.1 Timed Probabilistic Systems

A Markov decision process (MDP) is a generalization of a Markov chain in which
a set of possible actions is associated with each state. To each state-action pair is
associated a probability distribution, used to select the successor state [Der70].
We consider a fixed set of typed state variables V, coinciding with the variables
of the STS. An MDP IT = (S, A, p) consists of the following components:

— A finite set S of states, where each s € S assigns value s[z] to each = € V.
— For each s € S, A(s) is a non-empty finite set of actions available at s.

— For each s,t € S and a € A(s), pst(a) is the probability of a transition from
s to t when action a is selected. For every s,t € S and a € A(s), we have

0< pst(a) <1and Ztespst(a) =1

A behavior of an MDP is an infinite sequence w : sgagsia; --- of alternating
states and actions, such that s; € S, a; € A(s;) and py, s,,,(a;) > 0 for all i > 0.
For ¢ > 0, the sequence is constructed by iterating a two-phase selection process.
First, an action a; € A(s;) is selected nondeterministically; second, the successor
state s;41 is chosen according to the probability distribution ps; s, (a). A timed
probabilistic system (TPS) II = (S, A, p, Sin, time) consists of an MDP (S, A4, p),
and of the following additional components [dA97a, dA98]:

— A subset S;, C S of initial states. Each behavior of I must begin with a
state in S;j,.

— A labeling time that associates to each s € S and a € A(s) the ezpected
amount of time time(s,a) € R* spent at s when action a is selected.

We will often associate with an MDP or TPS additional labelings; the labelings
will be simply added to the list of components. We define the size of an MDP or
TPS IT to be the length (in bits) of its encoding, where we assume that transition
probabilities are encoded as the ratio between integers.

To be able to assign probabilities to sets of behaviors, we need to specify
the criteria used to choose the actions. To this end, we use the concept of policy
[Der70], closely related to the adversaries of [SL94, Seg95] and to the schedulers of
[Var85, PZ86]. A policy 7 is a set of conditional probabilities Qy(a | sos1 - - - sn),
for all sequences of states sgs1---s, € St and all a € A(s,). The conditional
probability @Q,(a | sos1 ---sp) is the probability with which action a € A(s,) is
chosen after the system has followed the sequence of states sgsy ---s,. For all
sequences of states sgs1 - -- s, € ST, it must be EaeA(Sn) Qn(a|sos1---sn) =1
Thus, a policy can be both history-dependent and randomized.



Under policy 7, the probability of a transition from s, to t after the state
sequence So - Sy is thus given by 3 4 | Ps,,t(a) @nla | so---sn). A policy
7 gives rise to a probability distribution over the set of behaviors [Der70]. We
write Pr7(A) to denote the probability of event A when policy 7 is used from
the initial state s. We also let X; and Y; be the random variables representing
the i-th state and the i-th action along a behavior, respectively. We say that a
policy n is memoryless if Qn(a | sos1---sp) = Qnla | sp) for all sequences of
states sps1---s, € ST and all a € A(sy).

3.2 Probabilistic Fairness

Fairness is a concept that has been introduced in the context of non-probabilistic
systems to model the outcome of probabilistic choices while abstracting from the
numerical values of the probabilities. Notions of fairness for probabilistic systems
have been studied in [HSP83, Var85] and more recently in [KB96], which also
present model-checking algorithms for probabilistic systems with fairness.

Given an MDP II = (S, A,p), a fairness condition F for II is a mapping F
that associates to each s € S a subset F(s) C A(s). The intended meaning is
that the choice at s among actions in F(s) should be “fair.” The various notions
of fairness differ in the way in which this “fairness” is defined. According to
[KB96], a policy 7 is said to be strictly fair (resp. almost, or weakly, fair) if
the behaviors that arise under 7 all satisfy (resp. satisfy with probability 1)
the following condition: whenever a behavior visits infinitely often a state s,
each action in F(s) is chosen infinitely often at s. In this paper we introduce
a new notion of fairness, called probabilistic fairness. Unlike the above notion
of fairness, the definition of probabilistic fairness refers directly to the policies,
rather than to the behaviors that arise from the policies.

Given an MDP II = (S, A,p) and a fairness condition F for II, we say
that a policy n is (probabilistically) F-fair if there is € > 0 such that, for all
n > 0, all sequences of states sg,...,s, € ST, and all a € F(s,), we have
Qn(a| so---sn) > e. The set of F-fair policies is denoted by n(F).

Clearly, if a policy is F-fair then it is also weakly fair; the converse is not
true in general. In the above definition, € can depend on the policy 7, but cannot
depend on the past sequence sqg - - - s,,_1 of states. If £ could depend on the past,
then probabilistic fairness would not imply weak fairness. Later we will prove
that, for finite TPSs and in the context of the long-run average properties we
consider, probabilistic fairness is equivalent to weak fairness. This equivalence
does not hold for all types of systems and properties.

A fair TPS II = (S, A, p, Sin, time, F) consists of a TPS (S, A, p, Sin, time)
and of a fairness condition F for (S, 4, p).

3.3 Translating STS into Fair TPS

Given an STS § = (V,O,T), its translation TPS IIs = (S, A,p, Sin, time, F)
shares the same state space S of S; the set of initial states is S;, = {s € S |
s |= O}. For each s € S, the other components of IIs are defined as follows,
depending on whether some immediate transition is enabled at s or not.



3.3.1 Some immediate transition enabled. Let 7T;(s) = 7T (s) N 7; be the
set of immediate transitions enabled at s, and assume that 7;(s) # 0. In this
case, we let A(s) = {a, | 7 € Ti(s)}, where action a, represents the choice of
transition 7 at s. For all 7 € T;(s), we let time(s,a,) = 0; moreover, action a, is
fair at s iff 7 is fair: precisely, a, € F(s) iff 7 € Ty, for all 7 € T;(s).

For each mode 1 < i < m., action a, leads with probability p] to state f7 (s),
except that if two or more modes lead to the same state, the probabilities are
added. Precisely, for all ¢ € S, we let py(a;) = > ;7 pro[f7(s) = t], where é[a]
is 1 if a is true, and 0 otherwise.

3.3.2 No immediate transitions enabled. If 7(s) C T3, we let T.(s) =
T(s) N Te and Ty (s) = T(s) N Ty; note that Te(s) # @, due to the presence
of the idling transition. We let A(s) = {a.} U {a, | 7 € Tu(s)}: action a.
represents the choice of a transition with exponential distribution, and for 7 €
T.(s) action a, represents the choice of the transition 7, which has unspecified
delay distribution. We let F(s) = A(s), and we define the expected times of the
actions by time(s,ac) =1/ 3. c1.(5) Vr', and time(s,a-) = 0 for all 7 € Ty (s).

Moreover, for 7 € T.(s) let ps(T) = v-/ > 1. V- In other words, p,(7) is
the probability that 7 is selected at s, conditional to the fact that the transition
is selected from 7T,(s). For all t € S and 7 € T,(s), the transition probabilities
are defined by:

palar) =S 00T () =1 pala) = S S pels) pOlT(s) = 1].
i=1

TET(s) i=1

3.4 Non-Zeno TPSs

We say that a fair TPS is non-Zeno if time diverges with probability 1 along
all behaviors, under all fair policies. Precisely, IT = (S, A, p, Sin, time, F) is non-
Zeno iff we have Pr(3°.2, time(Xy,Y;y) = oo) = 1 for all s € S, and all
1 € n(F). Since behaviors along which time does not diverge have no physical
meaning, we only consider non-Zeno TPSs: after translating an STS into a fair
TPS, it is necessary to check that it is non-Zeno. A method to do this is presented
in Section 6. A more sophisticated approach to the problem of time divergence,
inspired by [Seg95], is discussed in [dA97a].

4 Translation and Informal Semantics

Even though the formal semantics of STSs is defined by translation into fair
TPSs, there is a correspondence between the proposed translation and the infor-
mal semantics presented in Section 2.1. This correspondence is important from
a pragmatic point of view, since system models are usually constructed with this
intuitive semantics in mind. We justify the translation in three steps, considering
first the structure of the translation TPS, then the use of fairness, and lastly the
interaction between translation and specification languages.



4.1 Structure of the Translation TPS

To understand the correspondence between the translation and the informal
semantics, consider the system evolution from a state s. If there are immediate
transitions enabled at s, the correspondence between the informal semantics and
the structure of the translation TPS is immediate.

If T(s) C Ta, let as before T.(s) = T(s) N Te and T, (s) = T(s) N T,. The
set of available actions at s is {a.} U {a, | 7 € Tu(s)}. Let ¢. and g¢,, for
7 € Tu(s), be the probabilities with which these actions are chosen by a policy.
Note that g. and g, can depend on the past history of the behavior. There is
a relation between the probabilities ¢, and ¢,, 7 € T, selected by the policy,
and the rates of the transitions in T,(s), selected nondeterministically in the
informal semantics. To derive the relation, consider the probability of choosing
7 € T (s) in the translation TPS and in the informal semantics. In the TPS, this
probability is equal to ¢, for 7 € T,(s), and to gep-(s) for 7 € T(s). In the
informal semantics this probability is equal to ~,/ ET’ET(S) v, for all 7 € T (s).
Equating these probabilities, we obtain

(X )/ (X ) w=n/(E )

T'E€T(s) T'E€T(s) T'ET(s)

for all 7 € T, (s). This relation between ge, {gr}re7,(s) and {7V }re7,(s) Preserves
not only the probabilities of the transitions from s, but also the expected time
spent at s. In fact, from Section 3.3.2 the expected time spent by the TPS
at s is equal to qe/ D ey (s) V- If we substitute into this equation the value
of g, given by (1), we obtain 1/ ZT,eT(S) ~,+, which is exactly the expected
time spent at s under the informal semantics. Thus, equations (1) together with
the constraint ge + ) .- (s)Ur = 1 define a one-to-one mapping between the
unspecified transition rates in the informal semantics and the probabilities of
choosing the actions in the translation TPS. The mapping preserves both the
expected time spent at s, and the probabilities of transitions from s. Given a
nondeterministic choice for the transition rates {v;},¢7,(s), We can determine a
policy which simulates this choice; conversely, each policy can be interpreted as
a choice for these rates. This correspondence indicates that the translation from
STSs to fair TPS preserves the informal semantics of STSs.

4.2 Translation and Fairness

The above considerations also justify our use of fairness in the translation. In fact,
for 7 € Ty (s) the fairness of a, requires that ¢, > 0, which by (1) corresponds to
the requirement , > 0. Similarly, the fairness of a, requires that ¢g. > 0, which
corresponds to the requirement v, < oo for all 7 € T,(s). Thus, the fairness
conditions and the notion of probabilistic fairness are the exact counterpart of
the requirements 0 < -, < oo for the rates of transitions 7 € 7y,.



4.3 Translation and Specification Language

In Section 3.3.2 we assign expected time 0 to the actions that correspond to
transitions with unspecified rates. The argument presented above to justify this
assignment is valid only if we assume a restriction on the expressive power of
specification methods. Precisely, we allow specification methods to refer to the
amount of time spent at a state, but we require that they do not measure this
amount of time conditional on the successor state.

To clarify this point, consider as an example a state s of an STS on which
two transitions are enabled: a transition m with rate v, leading to state t1,
and a transition 75 with unspecified rate, leading to state t. The translation
we proposed would be inappropriate if our specification methods could express
properties like: “the time spent at s when t, is the immediate successor is on
average > b.” In fact, for the purposes of this property the choice of assigning
time(s, ar,) = 0 would not correspond to the idea of assigning nondeterministi-
cally a transition rate to 7. On the other hand, if the specification methods can
refer only to the expected time spent at s, regardless of the successor of s, then
the translation is faithful to the informal semantics. The specification methods
discussed in the next section obey this restriction.

5 Specification of Long-Run Average Properties

The long-run average properties we consider in this paper refer to the average
outcome of a task, measured over an interval of time whose length diverges
to infinity. A task is a (hopefully) finite activity performed regularly by the
system. The outcome of the task can depend both on its completion, and on its
duration. For example, a task might consist in sending a message and waiting for
the acknowledge; its outcome might be 1 if the acknowledge is received, or 0 if a
timeout occurs. The long-run average outcome of this task is equal to the long-
run average fraction of messages that are acknowledged. In [dA97a], tasks were
specified using labeled graphs called experiments. Here, we follow a simplified
approach, and given a fair TPS IT = (S, A, p, Sin, time, F), we specify tasks and
their outcomes using two labelings w and 7:

— The labeling w : S x S +— {0,1} associates to each s,t € S a label w(s, 1),
which has value 1 if the transition s — ¢t completes a task, and 0 otherwise.

— The labeling r : S x [J,cgA(s) x S —= R is used to define the outcome
of a task. Due to the restrictions on specification languages mentioned in
Section 4.3, we consider only labelings that can be written in the form

r(s,a,t) = a(s) time(s,a) + B(s,t)

for some functions @ : § = R* and 8 : S x § = R (where R = {z €
R | z > 0}). Thus, the labeling r can be used to measure the expected time
spent at system states, weighted by a function «; the “cost” associated to
system transitions, expressed by §; or a combination of the two.
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In GSPN reward models [CMT91] it is possible to associate a reward rate to the
places and transitions of the net; [Cla96] and [Ber97] propose methods for asso-
ciating a reward with each state of the Markov chain generated from a PEPA or
EMPA model. The r labeling discussed above serves a similar purpose; however,
we also introduce the notion of task, and the corresponding w labeling. For sys-
tems that can be translated into ergodic Markov chains, the two approaches are
equally expressive: even without a w labeling, the average outcome of a task can
be measured by measuring separately the rates of task completion and of output
generation, and by taking the ratio between the two. In the case of systems with
nondeterministic behavior, however, our approach leads to more expressive spec-
ification methods. In fact, in these systems the choice of policy may influence
differently the task completion rate and the outcome generation rate. Thus, the
ratio between the maximal outcome generation rate and the minimal task com-
pletion rate is in general not equal to the maximal long-run average outcome of
a task. From the r, w labelings, for each behavior w of IT we define a predicate
I and a quantity H,, for n > 0, as follows:

I Zﬁ Jk. [T'(Xk,Yk,Xk+1) > OVU)(Xk,Xk+1) > 0] (2)

n—1
X, Y, X
Hn — Ek:o T( k) Lk, k+1) ) (3)

Sorzo w(Xk, Xp1)

In (2), the notation 3 k is an abbreviation for “there are infinitely many dis-
tinct values for £”. Thus, I holds if w completes infinitely many tasks, or if one
such tasks produces infinite outcome. The quantity H,, represents the average
outcome per task for the first n steps of w. For all s € S and all policies 1, we
let
H,; (s) =inf{a € R | Pr?(I Aliminf H, < a) > 0} (4)
n—oo

be the infimum of the set of long-run average outcomes obtained with non-zero
probability by behaviors that satisfy I. We do not consider behaviors on which
1 is false, since these behaviors after a certain position cease to complete tasks
or to produce outcome, and the long-run average outcome is consequently not
well-defined: this point is discussed in detail in [dA97a, dA98]. Finally, we let

- . - + +
Hy(s) = nel;;(ff) H,(s)  Hg(s) = oo H, (s) -

The quantities Hx(s) and H;(s) represent the minimal and maximal long-run
average outcomes that can be achieved with non-zero probability by I-behaviors,
provided that the long-run average outcome is well-defined, and that a F-fair
policy is used from s. The specification of long-run average properties of STSs
and fair STSs is based on the specification of lower (resp. upper) bounds for
H(s) (resp. Hy(s)), for some states s € S.

As an example, consider the commuter system of Section 2.2. For all s,t € S,
we let w(s,t) = 1if s[c] =4 and t[c] = 1, and w(s,t) = 0 otherwise, so that w
counts the number of returns to city A. For all s € S and a € A(s), we also let
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r(s,a) = time(s,a) if s[c] € {1, 2}, and r(s,a) = 0 otherwise, so that r measures

the time spent going from A to B. With these labelings, H;r_-(s) is equal to the

maximal long-run average duration of a one-way trip from city A to city B, if

the system is initially at s (it can be shown that H;_-(s) does not depend on s in

this system). Using the algorithm presented in Section 6, we can compute that
+

H.(s) ~ 7.5526.

6 Verification of Long-Run Average Properties

The verification problem for long-run average properties consists in computing
H;_-(s), H(s) at all states s € S of a fair TPS. Algorithms that solve this ver-
ification problem for the case without fairness conditions have been presented
in [dA97a, dA98]. To solve the model-checking problem in presence of fairness
conditions, we first decompose the fair TPS into the components where a behav-
ior can reside forever under a fair policy. These components are called fair end
components, and are presented below. Once the TPS has been decomposed, we
apply to each component the algorithm of [dA98] to compute the maximal and
minimal long-run average outcome for the component, disregarding the fairness
conditions. These maximal and minimal values correspond to optimal and pes-
simal policies, which need not be fair. Nevertheless, using results on parametric
Markov chains we show that we can approximate these policies with a series of
fair policies, whose long-run average outcome converges to that of the optimal
and pessimal policies. This shows that, for each component, the maximal and
minimal long-run average outcomes computed disregarding fairness conditions
also apply to the case with fairness. Hence, the values of H]+_-(s) and Hx(s) at
a state s can be obtained by taking the maximum and minimum values of the
long-run average outcome computed for any component reachable from s.

6.1 Fair End Components

Given an MDP IT = (S, A,p), a sub-MDP is a pair (C, D), where C C S and
D is a function that associates to each s € C' a subset D(s) C A(s) of actions.
The sub-MDP corresponds thus to a subset of states and actions of the original
MDP. We say that a sub-MDP (C, D) is contained in a sub-MDP (C’,D’) if
{(s,a) | s€ CANa€ D(s)} C{(s,a)|s€C'"ANa€ D'(s)}.

Given a fairness condition F for IT, we say that sub-MDP (C, D) is a fair
end component (FEC) if the following conditions hold [dA97al:

— Closure: for all s € C,a € D(s),and t € S, if ps(a) > 0 then t € C.

— Connectivity: Let E = {(s,t) € C x C | Ja € D(s) . pse(a) > 0}. The graph
(C, E) is strongly connected.

— Fairness: For all s € C, we have F(s) C D(s).

We say that a FEC (C, D) is mazimal if there is no other FEC (C’, D') that
properly contains (C, D). We denote by MFEC(II, F) the set of maximal FECs
of IT. The set MFEC(II, F) can be computed in time polynomial in ) s |A(s)]
using simple graph algorithms; an algorithm to do so is given in [dA97a, §8].
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Intuitively, a fair end component is a portion of MDP consisting of the states
and actions that can be visited infinitely often by a behavior with positive prob-
ability, under some fair policy. To make this concept precise, given a behavior w

we let (C, D) = inft(w) be the sub-MDP defined by C = {s |OEIo k. Xy = s} and,
for se C, D(s) = {a |OETka =sAY, =a}.

Theorem 1 For any s € S and n € Nz, we have Pr?(inft(w) is a FEC) = 1.

In a purely probabilistic system, fair end components correspond to the closed
recurrent classes of the Markov chain underlying the system [KSK66]. Fair end
components are the fair counterpart of the end components of [dA97a, dA9§],
and are related to sets used in [KB96] to solve the model-checking problem for
PBTL*. As our first application of the above theorem, we obtain a criterion to
decide whether a fair TPS is non-Zeno.

Theorem 2 (condition for non-Zenoness) Given a fair TPS II =
(S, A, p, Sin, time, F), a FEC (C, D) is a zero-FEC if time(s,a) = 0 for all s € C
and a € D(s). TPS II is non-Zeno iff there is no zero-FEC reachable from Sy, .

Even though there can be exponentially many zero-FECs in a fair TPS, it is
easy to see that it suffices to consider the maximal ones. Hence, checking non-
Zenoness can be done in time polynomial in ) s |A(s)| [dA97a, §8].

6.2 Parametric Markov Chains

Given a finite set S of indices, a substochastic matriz is a matrix P = [py]stes
such that 0 < pyy < 1 for all s, € S and ), gpst < 1 for all s € S. Given
a sub-stochastic matrix P, the steady-state distribution matriz is defined by
P* =lim,, 0o n ' 35—y P* [KSK66]. We say that a state of P is surely recurrent
if the Markov chain corresponding to P has only one closed recurrent class, and
if the state belongs to that class. The following result can be proved by linear
algebra arguments [dA97a, §8].

Theorem 3 (continuity of steady-state distributions) Consider a family
P(x) = [pst(x)]s,tes of substochastic matrices parameterized by x € I, where
I C R is an interval of real numbers. Assume that the coefficients of P(x)
depend continuously on x for x € I. If there is s € S that is surely recurrent for
all © € I, then also the coefficients of P*(x) depend continuously on x for x € I.

6.3 The Model-Checking Algorithm

From the definitions of H(s) and H;r_-(s), we see that these quantities depend
only on the states and actions that are repeated infinitely often. Theorem 1
states that these states and actions form a FEC with probability 1: hence, we
can concentrate our attention on the maximal FECs. We say that an MDP is
strongly connected if, for each pair of states, there is a behavior prefix that leads
from one state to the other. By definition, maximal FECs are strongly connected
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sub-MDPs. Denote by @ = As.) the empty fairness condition. The following
theorem summarizes several results of [dA97a, §5] for strongly connected MDPs
without fairness conditions.

Theorem 4  Consider a strongly connected TPS II = (S, A,p,r,w). The fol-
lowing assertions hold.

— The value of Hw_ (s) does not depend on s € S. The common value Hq; can
be computed in time polynomial in the size of II.

— There is a memoryless policy 1 such that H"_ (s) = H(b_ for all s €
S. Moreover, the transition matrizc P, = [pl]sies defined by pl, =
2 aca(s) Pst(a) Qn(a | s) corresponds to a Markov chain having a single
closed recurrent class.

Similar assertions hold for H(; (s).

Using the results of the above theorem, we propose the following algorithms
for the computation of H(s) and H-(s).

Algorithm 1 (computation of H,(s) and H;.-(s)) Given a fair TPS IT =
(S, A,p, Sin, time, F) together with labelings r, w, the quantities Hx(s) and
H;r_-(s) can be computed at all s € S as follows.

1. Let £ = {(C,D) € MFEC(II,F) | 3s,t € C .3a € D(s).[r(s,a,t) >
OVw(s,t) > 0]} be the set of maximal FECs that contain at least one instance
of strictly positive 7 or w label. Write £ = {(C1, D1),...,(Cn, Dy)}-

2. For each 1 < i < n, let IT; = (C;, D;, p*, Fi, i, w;), where pt, F;, r;, w; are
the restrictions of p, F;, r, w to C;, D;, for 1 < ¢ < n. Using Theorem 4,

compute the values Hy ,, H(;z for all MDPs II;, for 1 <14 < n.

3. For each s € S, let K(s) = {i € [1.n] | s can reach C;} be the set of
indices of maximal FECs reachable from s. Then, H(s) = min;ck (s H(?)_,i

and H;—(S) = min;e g (s) HQJir,z i

Theorem 5  Algorithm 1 correctly computes H z(s) and H;_-(s)

Proof (sketch). The crux of the argument is to show that in a strongly con-
nected MDP the equality H(s) = H, holds for all s (and similarly for Hy(s)).
Once this is done, the decomposition in maximal FECs (Step 1) is justified by
Theorem 1, and the selection of the maximal FECs that contain at least one
positive r, w label is justified by (2), (3) and (4). Finally, Step 3 can be justified
using simple reachability arguments.

To show that in a strongly connected MDP IT = (S, A,p, F,r,w) we have
Hy(s) = Hy for all s, it suffices to show that Hz(s) = H,.(s), where n* is
the policy described in Theorem 4. To this end, let n® be the memoryless F-fair
policy that at each s € S chooses uniformly at random an action from A(s). For
each 0 < z < 1, define the memoryless policy n(z) by

Qnz)(a|s)=zQy(a|s)+(1—2)Qy(als)
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for all s and all a € A(s). Note that policy n(z) is F-fair for 0 < z < 1, and
it coincides with n* for z = 0. Let P(z) = [pst(x)]stes be the matrix of the
Markov chain arising from 7(x), defined by

pst(x) = Z Quz)(a| s) psi(a) ,

acA(s)

and let

Ts(m) = Z ZQn(m) (a | 5) pst(a) r(s,a,t) ws(x) = Zpst(m) ’U)(S,t) ’

acA(s) tes tes

for all s € S and 0 < 2 < 1. Denote by P*(x) = [p}]stes the steady-state
distribution matrix corresponding to P(z). By our choice of n* (see Theorem 4),
the Markov chain corresponding to P(0) has a single closed recurrent class C C
S. Since the MDP is strongly connected, by definition of n(z) all states of C
are surely recurrent for 0 < x < 1. Hence, as a consequence of standard facts

on Markov chains we have H, ,\(s) = (3 ;csP57t)/ (2cs Priwe)- Theorem 3
ensures that lim,_,o P*(z) = P*(0). Since for all s € S quantities rs(z) and
w,(z) are also continuous for z — 0, we have limy_,0 H, ,\(s) = Hy . From Hy <
H(s) and from the fact that n(x) is F-fair follows H(s) = inf,cq s H, (s) =
Hy , as was to be proved. 1

The complexity of the model-checking problem is given by the following re-
sult, which is an immediate consequence of Theorem 4 and Algorithm 1.

Theorem 6 The complezity of the model-checking problem for H . (s), H;(s)

is polynomial in the size of the translation TPS.

We conclude by showing that the notions of weak fairness and probabilistic
fairness coincide for finite TPSs and long-run average properties.

Theorem 7 Let H (s) = inf, i) H, (s), where 7)(F) is the set of weakly
fair policies, defined according to [KB96]. Then, H(s) = ﬂ'}(s) A similar
result holds for H;_-(s)

Proof. The result follows from an analysis of the proof of Theorem 5, together
with the observation that probabilistically fair policies are also weakly fair. 1
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